

Audit Report

1. DELIRIUM MASTERCHEF
2. DELIRIUM TOKEN
3. DELIRIUM TIMELOCK

Table of Contents
Overview

Project summary

Audit summary

 Risk summary

Findings
Findings summary

Explanation

Introduction
This interim report has been prepared for the Delirium Token, Delirium Masterchef and

Delirium Timelock smart contracts. The purpose of this report is to provide insights with

the aim of optimizing current smart contracts. Due to the overlap in code, it was

decided to reduce the interim report to 1 summary document. The procedure for

arriving at the following conclusions is made up of the following:

• Testing the code against known and rare attack patterns

• Assessing the layout of the various code components to test best practice

• Scanning and stress testing of the contract functions, including low-level calls and

edge cases. Cross

• Thorough line-by-line inspection by certified Solidity Developer.

• Masterchef isn't under timelock yet, We have been informed that this will happen

after the presale ends and will update this in the near future.

The investigation resulted in a number of minimal findings, with mainly informative

considerations. The "Findings" section contains an overview of the findings and associated

recommendations or additional information. In a separate file are the explanations of the

function calls, inheritance and call-graph in .DOT format.

Overview

Project summary

Network Polygon

Language Solidity

Codebase https://polygonscan.com/address/0xd3976E92a48821DD1122Ae5e8265b14595aF34d2

Audit summary

Audit Methodology Static Analysis, Manual Analysis

Risk summary

Risk Level Total Reported Disproved Solved Recognized Objection

Critical 0 0 0 0 0 0

Major 0 0 0 0 0 0

Medium 0 0 0 0 0 0

Minor 4 0 0 0 0 0

Informative 14 0 0 0 0 0

Discussion 1 0 0 0 0 0

 10-09-2021

Findings

 Public functions that can be declared External.

Gas Optimization Informative 15 Reported

Low-Level Calls.

Sensitive to errors Minor 4 Reported

 Static variable that can be made constant.

Gas Optimization Informative 1 Reported

 Equation with constant Boolean

Gas Optimization Informative 1 Reported

Unused return value.

Lost Computation Discussion 1 Reported

Category Status

Category

Status

Category

Status

Category

Status

Status

Findings summary

Public functions that can be declared External (Master Chef)
renounceOwnership() Could be declared as external:

 - Ownable.renounceOwnership() (masterchef.sol#72-74)

transferOwnership(address) Could be declared as external:

 - Ownable.transferOwnership(address) (masterchef.sol#80-83)

name() Could be declared as external:

 - ERC20.name() (masterchef.sol#604-606)

symbol() Could be declared as external:

 - ERC20.symbol() (masterchef.sol#612-614)

decimals() Could be declared as external:

 - ERC20.decimals() (masterchef.sol#629-631)

totalSupply() Could be declared as external:

 - ERC20.totalSupply() (masterchef.sol#636-638)

balanceOf(address) Could be declared as external:

 - ERC20.balanceOf(address) (masterchef.sol#643-645)

transfer(address,uint256) Could be declared as external:

 - ERC20.transfer(address,uint256) (masterchef.sol#655-658)

allowance(address,address) Could be declared as external:

 - ERC20.allowance(address,address) (masterchef.sol#663-665)

approve(address,uint256) Could be declared as external:

 - ERC20.approve(address,uint256) (masterchef.sol#674-677)

transferFrom(address,address,uint256) Could be declared as external:

 - ERC20.transferFrom(address,address,uint256) (masterchef.sol#692-706)

increaseAllowance(address,uint256) Could be declared as external:

 - ERC20.increaseAllowance(address,uint256) (masterchef.sol#720-723)

decreaseAllowance(address,uint256) Could be declared as external:

 - ERC20.decreaseAllowance(address,uint256) (masterchef.sol#739-747)

mint(address,uint256) Could be declared as external:

 - DeliriumToken.mint(address,uint256) (masterchef.sol#908-910)

setEmissionRate(uint256) Could be declared as external:

 - MasterChefV2.setEmissionRate(uint256) (masterchef.sol#1203-1210)

Public functions that can be declared External (Token)

renounceOwnership() can be written as external:

 - Ownable.renounceOwnership() (tokensingle.sol#72-74)

transferOwnership(address) can be written as external:

 - Ownable.transferOwnership(address) (tokensingle.sol#80-83)

name() can be written as external:

 - ERC20.name() (tokensingle.sol#247-249)

symbol() can be written as external:

 - ERC20.symbol() (tokensingle.sol#255-257)

decimals() can be written as external:

 - ERC20.decimals() (tokensingle.sol#272-274)

totalSupply() can be written as external:

 - ERC20.totalSupply() (tokensingle.sol#279-281)

balanceOf(address) can be written as external:

 - ERC20.balanceOf(address) (tokensingle.sol#286-288)

transfer(address,uint256) can be written as external:

 - ERC20.transfer(address,uint256) (tokensingle.sol#298-301)

allowance(address,address) can be written as external:

 - ERC20.allowance(address,address) (tokensingle.sol#306-308)

approve(address,uint256) can be written as external:

 - ERC20.approve(address,uint256) (tokensingle.sol#317-320)

transferFrom(address,address,uint256) can be written as external:

 - ERC20.transferFrom(address,address,uint256) (tokensingle.sol#335-349)

increaseAllowance(address,uint256) can be written as external:

 - ERC20.increaseAllowance(address,uint256) (tokensingle.sol#363-366)

decreaseAllowance(address,uint256) can be written as external:

 - ERC20.decreaseAllowance(address,uint256) (tokensingle.sol#382-390)

mint(address,uint256) can be written as external:

 Low-level calls
Low level call in Address.sendValue(address,uint256) (chef.sol#142-147):

 - (success) = recipient.call{value: amount}() (chef.sol#145)

Low level call in Address.functionCallWithValue(address,bytes,uint256,string) (chef.sol#210-221):

 - (success,returndata) = target.call{value: value}(data) (chef.sol#219)

Low level call in Address.functionStaticCall(address,bytes,string) (chef.sol#239-248):

 - (success,returndata) = target.staticcall(data) (chef.sol#246)

Low level call in Address.functionDelegateCall(address,bytes,string) (chef.sol#266-275):

 - (success,returndata) = target.delegatecall(data) (chef.sol#273)

Reduce gas by defining state variable as constant
 MasterChefV2.deliriumMaximumSupply (chef.sol#950) can be written as a constant.

 Comparison with Boolean

 MasterChefV2.nonDuplicated(IERC20) (chef.sol#999-1002) makes a comparison with a Boolean value:

 -require(bool,string)(poolExistence[_lpToken] == false,nonDuplicated: duplicated) (chef.sol#1000)

 Ignored Return Value

 MasterChefV2.add(uint256,IERC20,uint16,bool) (chef.sol#1005-1027) ignores the return value of
_lpToken.balanceOf(address(this)) (chef.sol#1007)

	Table of Contents
	Introduction
	Overview
	Project summary
	Audit summary
	Risk summary

	Findings
	Public functions that can be declared External.
	Low-Level Calls.
	Static variable that can be made constant.
	Equation with constant Boolean
	Unused return value.

